AQA

Please write clearly in block capitals.

Centre number

Candidate number

Surname
Forename(s) \qquad
Candidate signature \qquad

A-level BIOLOGY

Paper 1

Thursday 6 June 2019
Morning
Time allowed: 2 hours

Materials

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
TOTAL	

Information

- The marks for the questions are shown in brackets.
- The maximum mark for this paper is 91 .
- You must answer the questions in the spaces provided. Do not write You must answer the questions in the spaces provided outside the box around each page or on blank pages.
- Show all your working.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- a ruler with millimetre measurements
- a scientific calculator.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.

| 0 | 1 |
| :--- | :--- | :--- |\(. \begin{aligned} \& 1

\& Describe how a non-competitive inhibitor can reduce the rate of an\end{aligned}\) enzyme-controlled reaction.

Pectin is a substance found in some fruit and vegetables.
A scientist investigated the effect of pectin on the hydrolysis of lipids by a lipase enzyme.

His results are shown in Figure 1.
Figure 1

Use Figure 1 to explain why the scientist concluded that pectin is a non-competitive inhibitor.
\qquad
\qquad
\qquad
\qquad
\qquad

Question 1 continues on the next page

The scientist also found that pectin stops the action of bile salts. He prepared two suspensions:

- suspension \mathbf{A} - lipid and bile salts
- suspension B - lipid, bile salts and pectin.

He did not add lipase to either suspension.
He observed samples from the suspensions using an optical microscope. Figure 2 shows what he saw in a typical sample from each suspension.

Figure 2

| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{3}$ Calculate the maximum length of the large lipid droplet marked \mathbf{X} in Figure 2. |
| :--- | :--- | :--- | :--- |

Using a ruler with millimetre intervals always includes an uncertainty in the measurement. Use the uncertainty in your measurement to determine the uncertainty of your calculated maximum length.

You can assume there is no uncertainty in the magnification.
\qquad $\mu \mathrm{m}$

Uncertainty of your calculated maximum length = \qquad $\mu \mathrm{m}$

| $\mathbf{0}$ | $\mathbf{1}$ | .4 | No large lipid droplets are visible with the optical microscope in the samples from |
| :--- | :--- | :--- | :--- | suspension A.

Explain why.
Do not write
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Turn over for the next question

Complete Table 1 by putting a tick (\checkmark) where a cell wall component is present.
[3 marks]
Table 1

Cell wall component	Plants	Algae	Fungi	Prokaryotes
Cellulose				
Murein				
Chitin				

Cell walls make up much of the fibre that people eat.
Scientists investigated the relationship between the mass of fibre people ate each day and their risk of cardiovascular disease (CVD).

They gathered data from a large sample of people and used this to calculate a relative risk.

- A relative risk of 1 means there is no difference in risk between the sample and the whole population.
- A relative risk of <1 means CVD is less likely to occur in the sample than in the whole population.
- A relative risk of > 1 means CVD is more likely to occur in the sample than in the whole population.

Their results are shown in Figure 3. A value of ± 2 standard deviations from the mean includes over 95% of the data.

Figure 3

| $\mathbf{0}$ | $\mathbf{2} .2$ | $\mathbf{2}$ A student concluded from Figure $\mathbf{3}$ that eating an extra 10 g of fibre per day would |
| :--- | :--- | :--- | significantly lower his risk of cardiovascular disease.

Evaluate his conclusion.
\qquad
[Extra space]
\qquad
\qquad
\qquad
\qquad
\qquad

Question 2 continues on the next page

| $\mathbf{0}$ | $\mathbf{2}$ | $\mathbf{3}$ The scientists estimated the mean mass of fibre eaten per day using a food frequency |
| :--- | :--- | :--- | :--- | questionnaire (FFQ).

The FFQ asks each person how often they have eaten many types of food over the past year.

An alternative method to calculate fibre eaten is for a nurse to ask each person detailed questions about what they have eaten in the last 24 hours.

Suggest one advantage of using the FFQ method and one disadvantage of using the FFQ method compared with the alternative method.

Advantage
\qquad
\qquad
\qquad
\qquad
Disadvantage \qquad
\qquad
\qquad
\qquad
\qquad
Turn over for the next question Turn over

| $\mathbf{0}$ | $\mathbf{3}$ A group of students investigated biodiversity of different areas of farmland. |
| :--- | :--- | They collected data in each of these habitats:

- the centre of a field
- the edge of a field
- a hedge between fields.

Their results are shown in Figure 4.
Figure 4

| 0 | $\mathbf{3}$ | .1 | $\mathbf{1}$ What data would the students need to collect to calculate their index of diversity in |
| :--- | :--- | :--- | :--- | each habitat?

Do not include apparatus used for species sampling in your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad representative of each habitat.

1

2

0	3	.
3	Modern farming techniques have led to larger fields and the removal of hedges	

Use Figure 4 to suggest why biodiversity decreases when farmers use larger fields.
\qquad
\qquad
\qquad
\qquad

Question 3 continues on the next page

$\mathbf{0}$	$\mathbf{3}$.4
$\mathbf{4}$	Farmers are now being encouraged to replant hedges on their land.	

Suggest and explain one advantage and one disadvantage to a farmer of replanting hedges on her farmland.

Advantage
\qquad
\qquad
\qquad
\qquad
Disadvantage \qquad
\qquad
\qquad
\qquad
\qquad

0	4
	Scientists collected data on 800000 human births. The data showed the mass of

Their results are shown in Figure 5.
Figure 5

| $\mathbf{0}$ | $\mathbf{4}$ | .1 |
| :--- | :--- | :--- | Use Figure 5 to explain how human mass at birth is affected by stabilising selection.

\qquad
[Extra space] \qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 4 continues on the next page

| 0 | $\mathbf{4}$ | $\mathbf{2}$ The scientists studied the effect of one form, KIR2DS1, of the human KIR gene on |
| :--- | :--- | :--- | mass at birth.

In the following passage the numbered spaces can be filled with biological terms.
KIR2DS1 is an (1) of the KIR gene, found at a on
chromosome 19. KIR2DS1 is 14021 bases long and is \qquad into mRNA that is 1101 bases long. This mRNA is then \qquad into a polypeptide 304 amino acids long. The polypeptide is then modified in the organelle, \qquad (5) before forming its functional (6)__ protein structure.

Write the correct biological term beside each number below, that matches the space in the passage.
(1)
(2)
(3) \qquad
(4) \qquad
(5) \qquad
(6) \qquad

| $\mathbf{0}$ | $\mathbf{4}$ | $\mathbf{3}$ The scientists studied 1500 more births. They recorded the mass at birth of each |
| :--- | :--- | :--- | baby and the nature of the KIR gene in the mother's genome.

Some of their results are shown in Table 2.

Table 2

Presence or absence of KIR2DS1 in mother's genome	Number of babies with mass at birth:	
	between $\mathbf{2 5 0 0} \mathbf{~ g}$ and $\mathbf{4 5 0 0} \mathbf{~ g}$	above $\mathbf{4 5 0 0 \mathbf { ~ g }}$
Present	389	148
Absent	606	173

The scientists used a statistical test to test the following null hypothesis:
'The presence of KIR2DS1 in the mother's genome does not affect the frequency of births above 4500 g '

Tick (\checkmark) one box that gives the name of the statistical test that the scientists should use with the data in Table 2 to test this null hypothesis.

Chi-squared

Correlation coefficient

Student's t-test

Question 4 continues on the next page

| $\mathbf{0}$ | $\mathbf{4}$ | $\mathbf{4}$ The scientists calculated a P value of 0.03 when testing their null hypothesis. |
| :--- | :--- | :--- | What can you conclude from this result? Explain your answer.

\qquad

$\mathbf{0}$	$\mathbf{5}$.1
$\mathbf{1}$	Describe the structure of the human immunodeficiency virus (HIV).	

\qquad

Question 5 continues on the next page

Some people infected with HIV do not develop AIDS. These people are called HIV controllers.

Scientists measured the number of HIV particles (the viral load) and the number of one type of T helper cell (CD4 cells) in the blood of a group of HIV controllers and also in a group of HIV positive patients who had symptoms of AIDS.

The median values and the range of their results are shown in Table 3.
Table 3

HIV status of people	Median viral load $/$ virus particles per $\mathbf{c m}^{\mathbf{3}}$ of blood (range)	Median number of CD4 cells per $\mathbf{~ m m}^{3}$ of blood (range)
HIV controllers	212 (<50 to 609)	693 (529 to 887)
HIV positive people with AIDS symptoms	66274 $(30206$ to 306163$)$	248 $(107$ to 365$)$

| 0 | 5 | 2 |
| :--- | :--- | :--- | A test sample of $500 \mathrm{~mm}^{3}$ of blood is taken from an HIV controller to determine the viral load.

Tick (\checkmark) one box that shows the number of virus particles that would be present in a test sample of blood taken from an HIV controller with the median viral load.

106000

10600 \square

1060 \square

106

| 0 | 5 | 3 |
| :--- | :--- | :--- | HIV controllers do not develop symptoms of AIDS.

\qquad
[Extra space]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Turn over for the next question

| $\mathbf{0}$ | 6 |
| :--- | :--- | birth and then at 4,14 and 21 days after their birth.

Their results are shown in Table 4. Age 0 days = day of birth.
Table 4

Age / days	Percentage of heart cells undergoing mitosis	Percentage of heart cells undergoing DNA replication
-6	13.9	8.5
4	8.5	2.6
14	1.6	0.2
21	0.6	0.0

0	6	1

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
[Extra space] \qquad
\qquad
\qquad

The scientists determined the percentage of heart cells undergoing DNA replication by using a chemical called BrdU. Cells use BrdU instead of nucleotides containing thymine during DNA replication.

| $\mathbf{0}$ | $\mathbf{6}$. | $\mathbf{2}$ Describe how BrdU would be incorporated into new DNA during semi-conservative |
| :--- | :--- | :--- | replication.

\qquad

Question 6 continues on the next page

| 0 | 6 | $\mathbf{6}$ Cells with BrdU in their DNA are detected using an anti-BrdU antibody with an enzyme |
| :--- | :--- | :--- | :--- | attached.

Use your knowledge of the ELISA test to suggest and explain how the scientists identified the cells that have BrdU in their DNA.
\qquad
[Extra space]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{7}$ | Ulva lactuca is an alga that lives on rocks on the seashore. It is regularly covered by |
| :--- | :--- | :--- | seawater.

Figure 6 shows a diagram of one Ulva lactuca alga.
Figure 6

0	$\mathbf{7}$.	$\mathbf{1}$	Unlike plants, Ulva lactuca does not have xylem tissue.

Suggest how Ulva lactuca is able to survive without xylem tissue.
[1 mark]
\qquad
\qquad
\qquad
\qquad

Ulva lactuca has a haploid and a diploid form.
Figure 7 shows the life cycle of Ulva lactuca.
Figure 7

| $\mathbf{0}$ | $\mathbf{7}$ | $\mathbf{2}$ On Figure $\mathbf{7}$ complete each box with an appropriate letter to show the type of |
| :--- | :--- | :--- | cell division happening between each stage in the life cycle. Use ' \mathbf{T} ' to represent mitosis and ' E ' to represent meiosis.

[2 marks]
 Suggest and explain one reason why successful reproduction between Ulva prolifera and Ulva lactuca does not happen.
[2 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

0	8

Scientists grew sunflower plants. They supplied different plants with different volumes of water.

After two days, they determined the water potential in the leaf cells by using an instrument that gave a voltage reading.

The scientists generated a calibration curve to convert the voltage readings to water potential.

Figure 8 shows their calibration curve.
Figure 8

| $\mathbf{0}$ | $\mathbf{8}$ | $\mathbf{1}$ |
| :--- | :--- | :--- | The scientists needed solutions of known water potential to generate their calibration curve.

Table 5 shows how to make a sodium chloride solution with a water potential of $-1.95 \mathrm{MPa}$

Complete Table 5 by giving all headings, units and volumes required to make $20 \mathrm{~cm}^{3}$ of this sodium chloride solution.
[2 marks]
Table 5

Water potential I MPa	Concentration of sodium chloride solution / mol dm		
-1.95	0.04	Volume of $\mathbf{1 ~ \text { mol dm } ^ { - 3 } \text { sodium }}$ chloride solution /	-

Table 6 shows some of the concentrations of sodium chloride solution the scientists used and the water potential of each solution.

Table 6

Concentration of sodium chloride solution $/ \mathbf{~ m o l ~ d m}^{\mathbf{3}}$	Water potential / $\mathbf{~ M P a}$
0.04	-1.95
0.10	-4.87
0.12	-5.84

| $\mathbf{0}$ | $\mathbf{8}$ | .2 |
| :--- | :--- | :--- | There is a linear relationship between the water potential and the concentration of sodium chloride solution.

Use the data in Table 6 to calculate the concentration of sodium chloride solution with a water potential of -3.41 MPa
\qquad $\mathrm{mol} \mathrm{dm}^{-3}$

In addition to determining the water potential in the leaf cells, the scientists measured the growth of the leaves.

They recorded leaf growth as a percentage increase of the original leaf area.
Their results are shown in Figure 9.
Figure 9

| $\mathbf{0}$ | $\mathbf{8}$ | $\mathbf{3}$ One leaf with an original area of $60 \mathrm{~cm}^{2}$ gave a voltage reading of $-7 \mu \mathrm{~V}, ~$ |
| :--- | :--- | :--- | :--- |

Use Figure 8 (on page 28) and Figure 9 to calculate by how much this leaf increased in area.
Give your answer in cm^{2}
\qquad cm^{2}

[^0]\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

| 0 | $\mathbf{8}$ | $\mathbf{5}$ Use your knowledge of gas exchange in leaves to explain why plants grown in soil |
| :--- | :--- | :--- | with very little water grow only slowly.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Turn over for the next question

| 0 | 9 | A scientist investigated the affinity for oxygen of horse haemoglobin and mouse |
| :--- | :--- | :--- | haemoglobin.

Some of their results are shown in Table 7.
Table 7

Animal	Partial pressure of oxygen when haemoglobin is 50\% saturated $/$ kPa	Partial pressure of oxygen when haemoglobin is 25\% saturated $/$ kPa	Body mass of one animal / g
Horse	3.2	1.9	550000
Mouse	6.5	3.3	23

| $\mathbf{0}$ | $\mathbf{9}$ | $\mathbf{1}$ Plot the haemoglobin saturation data from Table 7 and use these points to sketch the |
| :--- | :--- | :--- | :--- | full oxyhaemoglobin dissociation curves for a horse and a mouse.

Percentage saturation of oxyhaemoglobin

Partial pressure of oxygen / kPa

$$
\begin{aligned}
& \text { Metabolic rate }=63 \times \mathrm{BM}^{-0.27} \\
& \mathrm{BM}=\text { body mass in grams }
\end{aligned}
$$

Use this equation to calculate how many times faster the metabolic rate of a mouse is than the metabolic rate of a horse.

Answer = \qquad times faster

| 0 | 9 | $\mathbf{3}$ The data in Table 7 show differences between the oxyhaemoglobin dissociation curve |
| :--- | :--- | :--- | :--- | for a mouse and the oxyhaemoglobin dissociation curve for a horse.

Suggest how these differences allow the mouse to have a higher metabolic rate than the horse.
[2 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

[Extra space]

\qquad
\qquad
\qquad
Question 9 continues on the next page

| $\mathbf{0}$ | $\mathbf{9} .4$ | $\mathbf{4}$ Mammals such as a mouse and a horse are able to maintain a constant body |
| :--- | :--- | :--- | :--- | temperature.

Use your knowledge of surface area to volume ratio to explain the higher metabolic rate of a mouse compared to a horse.
\qquad
[Extra space]
\qquad
\qquad

$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	Explain five properties that make water important for organisms.

\qquad
\longrightarrow
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
[Extra space]
\qquad
\qquad
\qquad

Question 10 continues on the next page

| $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{2}$ Describe the biochemical tests you would use to confirm the presence of lipid, |
| :--- | :--- | :--- | non-reducing sugar and amylase in a sample.

[5 marks]
\qquad
[Extra space]
\qquad
\qquad
\qquad

| $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{3}$ Describe the chemical reactions involved in the conversion of polymers to monomers |
| :--- | :--- | :--- | and monomers to polymers.

Give two named examples of polymers and their associated monomers to illustrate your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
_
\qquad
[Extra space] \qquad
\qquad
\qquad

For confidentiality purposes, from the November 2015 examination series, acknowledgements of third-party copyright material are published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2019 AQA and its licensors. All rights reserved.

[^0]: | $\mathbf{0}$ | $\mathbf{8}$ | .4 | $\mathbf{4}$ Sunflowers are not xerophytic plants. The scientists repeated the experiment with |
 | :--- | :--- | :--- | :--- | xerophytic plants.

 Suggest and explain one way the leaf growth of xerophytic plants would be different from the leaf growth of sunflowers in Figure 9.

